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Abstract
In 1998 the Adapted Ordering Method was developed for the representation
theory of the superconformal algebras in two dimensions. It allows us to
determine maximal dimensions for a given type of space of singular vectors,
to identify all singular vectors by only a few coefficients, to spot subsingular
vectors and to set the basis for constructing embedding diagrams. In this
paper we present the Adapted Ordering Method for general Lie algebras and
superalgebras and their generalizations, provided they can be triangulated. We
also review briefly the results obtained for the Virasoro algebra and for the
N = 2 and Ramond N = 1 superconformal algebras.

PACS numbers: 02.20.Qs, 02.20.Tw

1. Introduction and notation

In 1998 the Adapted Ordering Method was developed by Dörrzapf and Gato-Rivera [1], for
the study of the representation theory of the superconformal algebras in two dimensions, also
known as super Virasoro algebras. These are infinite-dimensional Lie superalgebras which
contain the Virasoro algebra as a subalgebra. They were first constructed three decades
ago independently by Kac, along with his classification of Lie superalgebras [2], and by
Ademollo et al as the symmetry algebras of the supersymmetric strings [3]. At present,
although several research lines make use of the superconformal algebras, their main relevance
in physics is still the fact that they provide the underlying symmetries of superstring theory.
The superconformal symmetries have a number N of fermionic anticommuting currents,
corresponding to N supersymmetries. Their mode decomposition provides the N infinite
sets of anticommuting generators of the superconformal algebras, whereas the Virasoro
operators provide the infinite set of commuting generators, together with some other infinite
sets of commuting generators which exist for N > 1 and arise as symmetries between

1 Also known as B Gato.
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the supercurrents. The Adapted Ordering Method was applied successfully to the N = 2
superconformal algebras [1, 4] (topological, Neveu–Schwarz, Ramond and twisted) and to the
Ramond N = 1 superconformal algebra [5], allowing us to obtain rigorous proofs for several
conjectured results, as well as many new results, especially for the case of the twisted N = 2
superconformal algebra and the case of the Ramond N = 1 superconformal algebra.

An obvious question now is whether the Adapted Ordering Method can be generalized
and can be applied to the study of algebras different than the superconformal ones. The
answer is positive and the purpose of this paper is precisely to provide the general description
of the Adapted Ordering Method for Lie algebras and superalgebras, and their generalizations,
provided they have a triangular decomposition, as is the case for many of them [6].

Let us introduce some basic concepts and notation which will be used throughout this
article. For a given algebra or superalgebra one defines freely generated modules over a
highest weight (h.w.) vector, denoted as Verma modules. The annihilation operators of the
algebra are the generators which annihilate the h.w. vectors of the Verma modules, whereas
the creation operators are the generators directly involved in the construction of the Verma
modules by acting on the h.w. vectors. A Verma module is in general irreducible, but in some
degenerate cases it contains submodules which are freely generated over, at least, one h.w.
vector different from the h.w. vector of the Verma module. These vectors are annihilated
by all the annihilation operators of the algebra, consequently and are usually referred to as
singular vectors. The irreducible h.w. representations are then obtained as the quotients of the
Verma modules divided by all their submodules. Surprisingly, the complete set of singular
vectors does not generate all the submodules in the case of Verma modules which contain
subsingular vectors. The reason is that subsingular vectors are singular vectors of the quotient
space, but not of the Verma module itself [11–14]. In this case, one has to divide further
by the submodules generated by the subsingular vectors, repeating this division procedure
successively, if necessary.

On the Verma modules one introduces a hermitian contravariant form, known as
Shapovalov form. The vanishing of the corresponding determinant indicates the existence
of at least one singular vector. The determinant may not detect the whole set of singular
vectors, however, neither does it give the dimension of the space of singular vectors with
some given weights. There could be, in fact, more than one linearly independent singular
vectors with the same weights. Therefore, the dimensions of the spaces of singular vector have
to be found by an independent procedure. The Adapted Ordering Method provides such a
procedure since it puts upper limits on these dimensions, allowing us to determine the maximal
dimension for a given space of singular vectors. For most weights of a Verma module these
upper limits on the dimensions of the spaces of singular vectors are found equal to zero and,
as a consequence, one obtains a rigorous proof that there cannot exist any singular vectors
for these weights. For some weights, however, one finds that spaces of singular vectors are
allowed to exist, either only one-dimensional, as is the case for the Virasoro algebra, or even
higher dimensional spaces, as it happens for the N = 2 and Ramond N = 1 superconformal
algebras [4, 5, 14–16]. As we will see, the Adapted Ordering Method also allows us to identify
all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis
for constructing embedding diagrams, as a result.

The idea for developing the Adapted Ordering Method originated, in rudimentary form,
from a procedure due to A Kent for the study of the representations of the Virasoro algebra
[7]. For this purpose the author analytically continued the Virasoro Verma modules, yielding
‘generalized’ Verma modules, where he constructed ‘generalized’ singular vectors in terms
of analytically continued Virasoro operators. This analytical continuation is not necessary;
however, for the Adapted Ordering Method, nor is it necessary to construct singular vectors in
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order to apply it. The underlying idea is the concept of adapted orderings for all the possible
terms of the ‘would be’ singular vectors. An adapted ordering is a criterion, satisfying certain
requirements, to decide which of any two given terms is the bigger one. To be more specific,
a total ordering will be called adapted to a subset of terms provided some conditions are met.
The complement of that subset will be the ordering kernel and will play a crucial rôle since
its size puts an upper limit on the dimension of the space of singular vectors.

In what follows, in section 2 we will describe the Adapted Ordering Method for a general
Lie algebra or superalgebra with a triangular decomposition and, as an example, we will apply
this method to the Virasoro algebra. In section 3, we will review briefly the results obtained
for the N = 2 and the Ramond N = 1 superconformal algebras, as an illustration of the
possibilities of this method. Section 4 is devoted to conclusions.

2. The Adapted Ordering Method

Let A denote a Lie algebra or superalgebra with a triangular decomposition: A = A− ⊕
HA ⊕ A+, where A− is the set of creation operators, A+ is the set of annihilation operators
and HA is the Cartan subalgebra. In general, an eigenvector with respect to the Cartan
subalgebra with relative weights given by the set {li}, in particular a singular vector �{li }, can
be expressed as a sum of products of creation operators with total weights {li} acting on a h.w.
vector with weights {�i}:

�{li } =
∑

m1,m2,...∈N0

∑

a,b,c,...

ka
m1
−1 ,a

m2
−2 ,...b

n1
−1,b

n2
−2,...

X
a

m1
−1 ,a

m2
−2 ,...b

n1
−1,b

n2
−2,...

{li } |{�i}〉, (1)

where a−1, a−2, . . . b−1, b−2, . . . are the creation operators of the algebra, X
a

m1
−1 ,a

m2
−2 ,...b

n1
−1,b

n2
−2,...

{li }
are the products of the creation operators: a

m1
−1a

m2
−2 . . . b

n1
−1b

n2
−2 . . ., with total weights {li}, which

will be denoted simply as terms, and ka
m1
−1 ,a

m2
−2 ,...b

n1
−1,b

n2
−2,...

∈ C are coefficients which depend on
the given term. A non-trivial term Y then refers to a term with a non-trivial coefficient kY .
Observe that the weights of �{li } are given by {li + �i}; it is however customary to label the
vectors in the Verma modules by their relative weights {li}.

Now let us define the set C{li } as the set of all the terms with weights {li}:
C{li } = {

X
a

m1
−1 ,a

m2
−2 ,...b

n1
−1,b

n2
−2,...

{li } ,m1,m2, . . . n1, n2, . . . ∈ N0
}
, (2)

and let O denote a total ordering on C{li }, that is an ordering such that any two different terms
in C{li } are ordered with respect to each other. Thus �{li } in equation (1) needs to contain an
O-smallest X0 ∈ C{li } with kX0 �= 0 and kY = 0 for all Y ∈ C{li } with Y<OX0 and Y �= X0. We
define an adapted ordering on C{li } as follows:

Definition 2.A. A total ordering O on C{li } is called adapted to the subset CA
{li } ⊂ C{li } in the

Verma module V{�i } if for any element X0 ∈ CA
{li } at least one annihilation operator � exists

for which �X0|{�i}〉 contains a non-trivial term X̃

�X0|{�i}〉 = (kX̃X̃ + · · ·)|{�i}〉, (3)

which is absent, however, for all �X|{�i}〉, where X is any term X ∈ C{li } which is O-larger
than X0, that is such that X0<OX. The complement of CA

{li }, C
K
{li } = C{li }\CA

{li } is the kernel with
respect to the ordering O in the Verma module V{�i }.

Now we will see that the coefficients with respect to the terms of the ordering kernel
CK

{li } uniquely identify a singular vector �{li }. Since the size of the ordering kernels is in
general small, it turns out that just a few coefficients completely determine a singular vector
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no matter its size, which allows one to find easily product expressions for descendant singular
vectors. For example, in the case of the conformal and N = 1, 2 superconformal algebras the
ordering kernels found for most weights have zero or one term, for some weights they have
two terms and for some other weights they have three terms. This property is summarized in
the following theorem.

Theorem 2.B. Let O denote an ordering adapted to CA
{li } at weights {li} with kernel CK

{li } for a
given Verma module V{�i }. If two singular vectors �1

{li } and �2
{li } with the same weights have

k1
X = k2

X for all X ∈ CK
{li }, then

�1
{li } ≡ �2

{li }. (4)

Proof. Let us consider the singular vector �{li } = �1
{li } − �2

{li }, which does not contain any
terms of the ordering kernel CK

{li }, simply because k1
X = k2

X for all X ∈ CK
{li }. As C{li } is a totally

ordered set with respect to O, the non-trivial terms of �{li }, provided �{li } is non-trivial, need
to have a O-smallest X0 ∈ CA

{li }. Thus the coefficient kX0 of X0 in �{li } must be non-trivial. As
O is adapted to CA

{li } one can find an annihilation operator � such that �X0|{�i}〉 contains a
non-trivial term that cannot be created by � acting on any other term of �{li } which is O-larger
than X0. But X0 was chosen to be the O-smallest term of �{li }. Therefore, �X0|{�i}〉 contains
a non-trivial term that cannot be created from any other term of �{li }. The coefficient of this
term is obviously given by ckX0 with c a non-trivial complex number. But �{li } is a singular
vector and therefore must be annihilated by any annihilation operator, in particular by �. It
follows that kX0 = 0, contrary to our original assumption. Thus, the set of non-trivial terms
of �{li } is empty and therefore �{li } = 0. This results in �1

{li } = �2
{li }. �

Theorem 2.B states, therefore, that if two singular vectors with the same weights, in the
same Verma module, agree on the coefficients of the ordering kernel, then they are identical.
A crucial point now is that the size of the kernel puts an upper limit on the dimension of the
corresponding space of singular vectors, as stated in the following theorem:

Theorem 2.C. Let O denote an ordering adapted to CA
{li } at weights {li} with kernel CK

{li } for a
given Verma module V{�i }. If the ordering kernel CK

{li } has n elements, then there are at most n
linearly independent singular vectors �{li } in V{�i } with relative weights {li}.

Proof. Suppose there were more than n linearly independent singular vectors �{li } in V{�i }
with relative weights {li}. We choose n + 1 linearly independent singular vectors among them
�1, . . . , �n+1. The ordering kernel CK

{li } has the n elements X1, . . . , Xn. Let kjk denote the
coefficient of the term Xj in the vector �k in a suitable basis decomposition. The coefficients
kjk thus form a n by n + 1 matrix M. The homogeneous system of linear equations Mλ = 0
thus has a non-trivial solution λ0 = (

λ0
1, . . . , λ

0
n+1

)
for the vector λ. We then form the linear

combination � = ∑n+1
i=1 λ0

i �i . Obviously, the coefficient of Xj for the vector � is just given by
the j th component of the vector Mλ which is trivial for j = 1, . . . , n. Hence, the coefficients
of � are trivial on the ordering kernel. On the other hand, � is a linear combination of singular
vectors and therefore it is also a singular vector. Due to theorem 2.B one immediately finds
that � ≡ 0 and therefore

∑n+1
i=1 λi�i = 0. This, however, contradicts the assumption that

�1, . . . , �n+1 are linearly independent. �

Therefore, one needs to find suitable orderings in order to obtain the smallest possible
kernels. Observe that the maximal possible dimension n does not imply that all the singular
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vectors of the corresponding type are n-dimensional. From this theorem one deduces that if
CK

{li } = ∅ for a given Verma module, then there are no singular vectors with relative weights
{li} in it. That is:

Theorem 2.D. Let O denote an ordering adapted to CA
{li } at weights {li} with trivial kernel

CK
{li } = ∅ for a given Verma module V{�i }. A singular vector �{li } in V{�i } with relative weights

{li} must be therefore trivial.

Although this theorem is deduced straightforwardly from theorem 2.C, which is exactly
proven, there is another interesting proof using theorem 2.B.

Proof. The trivial vector 0 satisfies any annihilation conditions for any weights. As the
ordering kernel is trivial, CK

{li } = ∅, the components of the vectors 0 and �{li } agree on the
ordering kernel and using theorem 2.B we obtain �{li } = 0. �

As a simple example of the Adapted Ordering Method we will see now the application
of this method to the Virasoro algebra V, which has been extensively studied in the literature
[8–10]. This algebra is given by the commutation relations

[Lm,Ln] = (m − n)Lm+n +
C

12
(m3 − m)δm+n,0, [C,Lm] = 0, m, n ∈ Z, (5)

where C commutes with all operators of V and can hence be taken to be constant c ∈ C. V can be
written in its triangular decomposition: V = V− ⊕HV ⊕V+, where V− = span{L−m : m ∈ N}
is the set of creation operators, V+ = span{Lm : m ∈ N} is the set of annihilation operators and
the Cartan subalgebra is given by HV = span{L0, C}. For elements of V that are eigenvectors
of L0 with respect to the adjoint representation the L0-eigenvalue is usually called the
level l. The terms are obviously given by the products of the form L−pI

. . . L−p1 , pq ∈ N for
q = 1, . . . , I, I ∈ N, with level l = ∑I

q=1 pq . Note that annihilation operators Lm ∈ V+ have
negative level l = −m,m ∈ N.

A representation with L0-eigenvalues bounded from below contains a highest weight
(h.w.) vector |�〉, with L0-eigenvalue �, which is annihilated by the set of annihilation
operators V+ :

V+|�〉 = 0, L0|�〉 = �|�〉. (6)

The Verma module V� built on |�〉 is L0-graded in a natural way. The corresponding
L0-eigenvalue is called the conformal weight and is written for convenience as � + l, where
l is the level. Any proper submodule of V� needs to contain a singular vector �l that is not
proportional to the h.w. vector |�〉 but still satisfies the h.w. conditions with conformal weight
� + l:

V+�l = 0, L0�l = (� + l)�l. (7)

Now we will see the total ordering on the set of terms Cl at level l defined by Kent [7]
for the Virasoro algebra. One has to take into account, however, that Kent used the following
ordering in order to show that, in his generalized Verma modules, the generalized singular
vectors at level 0 satisfying the h.w. conditions are actually proportional to the h.w. vector.
Using the Adapted Ordering technology, though one deduces that this ordering already implies
that all Virasoro singular vectors are unique at their levels up to proportionality, simply because
the ordering kernel for each level l ∈ N has just one element: Ll

−1.
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Definition 2.E. On the set Cl of terms of Virasoro operators at level l one introduces
the total ordering OV for l ∈ N: for any two terms X1, X2 ∈ Cl , X1 �= X2, with
Xi = L−mi

Ii

. . . L−mi
1
Lni

−1, n
i = l − mi

Ii
. . . − mi

1, or Xi = Ll
−1, i = 1, 2 one defines

X1<OV
X2 if n1 > n2. (8)

If, however, n1 = n2 one computes the index j0 = min{j : m1
j − m2

j �= 0,

j = 1, . . . , min(I1, I2)}. One then defines

X1<OV
X2 if m1

j0
< m2

j0
. (9)

For X1 = X2 one sets X1<OV
X2 and X2<OV

X1.

The index j0 describes the first mode, read from the right to the left, for which the
generators in X1 and X2 (L−1 excluded) are different. For example, in C8 one has
L−2L−2L−2L

2
−1<OV

L−4L−2L
2
−1 with index j0 = 2. Observe that Ll

−1 ∈ Cl is the OV-
smallest term in Cl . Now using the Adapted Ordering Method one finds the following
theorem [1].

Theorem 2.F. The ordering OV is adapted to CA
l = Cl\

{
Ll

−1

}
for each level l ∈ N and for all

Verma modules V�. The ordering kernel is given by the single element set CK
l = {

Ll
−1

}
.

For example, let us consider the set of terms at level 3, C3 = {
L3

−1, L−2L−1, L−3
}
. One finds

the total ordering L3
−1<OV

L−2L−1<OV
L−3, which is adapted to CA

3 = {L−2L−1, L−3} with the
ordering kernel CK

3 = {
L3

−1

}
. To see this, one has to compute the action of the annihilation

operators � ∈ {L1, L2, L3} on the three terms. In fact, the action of L1 already reveals the
structure of CA

3 , as L1L−2L−1|�〉 contains the term L2
−1 that is absent in L1L−3|�〉. The

action of the three annihilation operators on L3
−1|�〉, however, produces terms that are also

created by the action of these operators on L−2L−1|�〉 and/or L−3|�〉.
Finally, from the previous theorem one now deduces the known result about the uniqueness

of the Virasoro singular vectors [7].

Theorem 2.G. If the Virasoro Verma module V� contains a singular vector �l at level l, l ∈ N,
then �l is unique up to proportionality.

3. Results for the superconformal algebras

As an illustration of the possibilities of the Adapted Ordering Method, in this section we
will review briefly the results obtained for the N = 2 and Ramond N = 1 superconformal
algebras. This method has been applied to the topological, to the Neveu–Schwarz and to the
Ramond N = 2 algebras in [1], to the twisted N = 2 algebra in [4] and to the Ramond N = 1
algebra in [5]. As the representation theory of these superconformal algebras has different
types of Verma modules, one has to introduce different adapted orderings for each type and
the corresponding kernels also allow different degrees of freedom.

Let us start with the topological N = 2 superconformal algebra T. It contains the Virasoro
generators Lm with trivial central extension, a Heisenberg algebra Hm corresponding to a
U(1) current, and the fermionic generators Gm and Qm corresponding to two anticommuting
fields with the conformal weights 2 and 1, respectively. T satisifies the (anti-)commutation

6
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relations [17]

[Lm,Ln] = (m − n)Lm+n, [Hm,Hn] = C

3
mδm+n,

[Lm,Gn] = (m − n)Gm+n, [Hm,Gn] = Gm+n,

[Lm,Qn] = −nQm+n, [Hm,Qn] = −Qm+n,

[Lm,Hn] = −nHm+n +
C

6
(m2 + m)δm+n,

{Gm,Qn} = 2Lm+n − 2nHm+n +
C

3
(m2 + m)δm+n,

{Gm,Gn} = {Qm,Qn} = 0, m, n ∈ Z.

(10)

The set of annihilation operators which is common for all the Verma modules, T+, is spanned
by the generators with positive index, the set of creation operators which is common for
all the Verma modules, T−, is spanned by the generators with negative index and the zero
modes are given by T0 = span{L0,H0, C,G0,Q0}. The Cartan subalgebra is generated by
HT = span{L0,H0, C}, where C can be taken to be constant c ∈ C, and the fermionic
generators {G0,Q0} can act as annihilation or creation operators, classifying the different
types of Verma modules in this way.

A h.w. vector |�,h〉N is an eigenvector of HT with L0-eigenvalue �, H0-eigenvalue h
and vanishing T+ action. Additional vanishing conditions N are possible with respect to the
operators G0 and Q0, resulting as follows [14]. One can distinguish four different types of
h.w. vectors |�,h〉N labeled by a superscript N ∈ {G,Q,GQ}, or no superscript at all: h.w.
vectors |�,h〉G annihilated by G0 but not by Q0 (G0-closed), h.w. vectors |�,h〉Q annihilated
by Q0 but not by G0 (Q0-closed), h.w. vectors |0, h〉GQ annihilated by both G0 and Q0 (chiral),
with zero conformal weight necessarily, and finally undecomposable h.w. vectors |0, h〉 that
are neither annihilated by G0 nor by Q0 (no-label), also with zero conformal weight. Hence
we have four different types of Verma modules [14]: VG

�,h,V
Q
�,h,V

GQ
0,h and V0,h, built on the

four different types of h.w. vectors.
For elements X of T which are eigenvectors ofHT with respect to the adjoint representation

one defines the level l as [L0, X] = lX and the charge q as [H0, X] = qX. In particular,
elements of the form X = L−lL . . .L−l1H−hH

. . .H−h1Q−qQ
. . .Q−q1G−gG

. . .G−g1 , and any

reorderings of it, have level l = ∑L
j=1 lj +

∑H
j=1 hj +

∑Q
j=1 qj +

∑G
j=1 gj and charge

q = G − Q. The Verma modules are naturally N0 × Z graded with respect to the HT

eigenvalues relative to the eigenvalues (�, h) of the h.w. vector. For a vector labeled as �l,q

in VN
�,h the L0-eigenvalue is � + l and the H0-eigenvalue is h + q with the level l ∈ N0 and the

relative charge q ∈ Z.
The singular vectors are annihilated by T+ and may also satisfy additional vanishing

conditions with respect to the operators G0 and Q0. Therefore, one also distinguishes singular
vectors of the types [14] �G

l,q, �
Q
l,q , �

GQ
l,q and �l,q . As there are four types of Verma modules

and four types of singular vectors one might think of 16 different combinations of singular
vectors in Verma modules. However, no-label and chiral singular vectors do not exist neither
in chiral Verma modules VGQ

0,h nor in no-label Verma modules [14] V0,h (with one exception:
chiral singular vectors exist at level 0 in no-label Verma modules). Using the Adapted
Ordering Method one has to introduce adapted orderings for the remaining 12 combinations,
whose kernels give upper limits for the dimensions of the corresponding spaces of singular
vectors. One finds that for most charges q singular vectors do not exist. For the case of
the Verma modules VG

�,h built on G0-closed h.w. vectors |�,h〉G, for c �= 3, the maximal

dimensions for the spaces of singular vectors �G
l,q, �

Q
l,q�

GQ
l,q and �l,q are given in table 1 [1].
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Table 1. Maximal dimensions for singular vector spaces in VG
�,h.

q = −2 q = −1 q = 0 q = 1 q = 2

�G
l,q,|�,h〉G 0 1 2 1 0

�
Q

l,q,|�,h〉G 1 2 1 0 0

�
GQ

l,q,|−l,h〉G 0 1 1 0 0

�l,q,|−l,h〉G 0 1 1 0 0

Table 2. Maximal dimensions for singular vectors spaces in VGQ
0,h and in V0,h.

q = −2 q = −1 q = 0 q = 1 q = 2

�G
l,q,|0,h〉GQ 0 0 1 1 0

�
Q

l,q,|0,h〉GQ 0 1 1 0 0

�G
l,q,|0,h〉 0 1 3 3 1

�
Q
l,q,|0,h〉 1 3 3 1 0

Charges q that are not given have dimension 0 and hence do not allow any singular vectors.
The maximal dimensions for the case of the Verma modules VQ

�,h, for c �= 3, are obtained
simply by interchanging G ↔ Q and q ↔ −q in the previous table.

For the case of singular vectors in chiral Verma modules VGQ
0,h and in no-label Verma

modules V0,h, for c �= 3, one obtains the following maximal dimensions given in table 2 [1].
Tables 1 and 2 prove the conjecture made in [14], using the algebraic mechanism called the

cascade effect, about the possible existing types of topological singular vectors. In addition,
low level examples were constructed [14] for all these types, which proves that all of them
exist already at level 1. The four types of two-dimensional spaces of singular vectors of
table 1 also exist starting at level 2, and four examples at level 3 were constructed [14] as well.
For the case of the three-dimensional spaces of singular vectors in no-label Verma modules in
table 2, the corresponding types of singular vectors have been constructed at level 1 generating
one-dimensional [14] as well as two-dimensional [1] spaces, but no further search has been
done for the three-dimensional spaces.

Transferring the dimensions we have found in tables 1 and 2 to the Neveu–Schwarz
N = 2 algebra [3, 19–22] is straightforward as this algebra is related to the topological N = 2
algebra through the topological twists T ±

W : Lm = Lm ± 1/2Hm,Hm = ±Hm,Gm = G±
m+1/2

and Qm = G∓
m−1/2, where G±

m+1/2 are the half-integer moded fermionic generators. As a
result, the standard Neveu–Schwarz h.w. vectors correspond to G0-closed topological h.w.
vectors, whereas the chiral (antichiral) Neveu–Schwarz h.w. vectors, annihilated by G+

−1/2

(G−
−1/2), correspond to chiral topological h.w. vectors. This implies [12, 14] that the standard

and chiral and antichiral Neveu–Schwarz singular vectors correspond to topological singular
vectors of the types �G

l,q,|�,h〉G and �
GQ

l,q,|�,h〉G , whereas the Neveu–Schwarz singular vectors
built in chiral or antichiral Verma modules correspond to topological singular vectors of only
the type �G

l,q,|�,h〉GQ . As a consequence, by untwisting the first row of table 1 one recovers
the results [15, 16] that in Verma modules of the Neveu–Schwarz N = 2 algebra singular
vectors only exist for charges q = 0,±1 and two-dimensional spaces only exist for uncharged
singular vectors. By untwisting the third row of table 1 one gets a proof for the conjecture
[14] that chiral singular vectors in Neveu–Schwarz Verma modules only exist for q = 0, 1
whereas antichiral singular vectors only exist for q = 0,−1. The untwisting of the first row
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of table 2, finally, proves the conjecture [12, 14] that in chiral Neveu–Schwarz Verma modules
VNS,ch

h/2,h singular vectors only exist for q = 0,−1, whereas in antichiral Verma modules VNS,a
−h/2,h

singular vectors only exist for q = 0, 1.
As to the representations of the Ramond N = 2 algebra [19–22], they are exactly

isomorphic to the representations of the topological N = 2 algebra. Namely, combining the
topological twists T ±

W and the spectral flows one constructs a one-to-one mapping between the
Ramond singular vectors and the topological singular vectors, at the same levels and with
the same charges [18]. Therefore the results of tables 1 and 2 can be transferred to the
Ramond singular vectors simply by exchanging the labels G → (+),Q → (−), where the
helicity (±) denotes the vectors annihilated by the fermionic zero modes G±

0 , and by taking
into account that the chiral and undecomposable no-helicity Ramond vectors [14, 13, 18]
require conformal weight � + l = c/24.

The twisted N = 2 superconformal algebra [19–22] is not related to the other three
N = 2 algebras. It has mixed modes, integer and half-integer, for the fermionic generators,
and the eigenvectors have no charge, as the U(1) current generators are half-moded, but they
have fermionic parity. The Adapted Ordering Method was worked out for the twisted N = 2
algebra in [4]. The maximal dimension for the spaces of singular vectors in standard Verma
modules was found to be two and these two-dimensional singular spaces were shown to exist
by explicit computation, starting at level 3/2. In Verma modules built on G0-closed h.w.
vectors, however, the singular vectors were found to be only one-dimensional. This method
also allowed us to propose a reliable conjecture for the coefficients of the relevant terms of
all singular vectors, i.e. for the coefficients with respect to the ordering kernels, which made
possible to identify all the cases of two-dimensional spaces of singular vectors for all levels,
as well as to identify all G0-closed singular vectors. The resulting expressions, in turn, led to
the discovery of subsingular vectors for this algebra, and several explicit examples were also
computed. Finally, the multiplication rules for singular vector operators were derived using
the ordering kernel coefficients, which set the basis for the analysis of the twisted N = 2
embedding diagrams.

Finally, let us consider the N = 1 superconformal algebras [8, 22–24]. The structure of
the h.w. representations of the Neveu–Schwarz N = 1 algebra has been completely understood
in [25]. The corresponding Verma modules do not contain two-dimensional singular vector
spaces neither subsingular vectors. In the case of the Ramond N = 1 algebra, however, the
application of the Adapted Ordering Method in [5] has shown that its representations have a
much richer structure than previously suggested in the literature. In particular, it was found
that standard Verma modules may contain two-dimensional spaces of singular vectors and
also subsingular vectors. Moreover, the two-dimensional ordering kernels allowed one to
derive multiplication rules for singular vector operators and led to expressions for the two-
dimensional spaces of singular vectors. Using these multiplication rules descendant singular
vectors were studied and embedding diagrams were derived for the rational models. In
addition, this allowed one to conjecture the ordering kernel coefficients of all singular vectors
and therefore identify these vectors uniquely.

4. Conclusions and final remarks

We have presented the Adapted Ordering Method for general Lie algebras and superalgebras
and their generalizations, provided they can be triangulated, as is the case in many interesting
examples. This method is based on the concept of adapted orderings, leading to the definition
of the ordering kernels, which plays a crucial role since their sizes limit the dimensions of the
corresponding spaces of singular vectors. As a result, the adapted orderings must be chosen
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such that the ordering kernels are as small as possible. Weights for which the ordering kernels
are trivial do not allow any singular vectors in the corresponding weight spaces. On the other
hand, non-trivial ordering kernels give us the maximal dimensions of the possible spaces of
singular vectors and uniquely define all singular vectors through the coefficients with respect
to them, allowing us to set the basis for constructing embedding diagrams.

The Adapted Ordering Method follows from Definition 2.A plus Theorems 2.B, 2.C and
2.D, which are rigorously proven. There is nothing in the Definition 2.A, neither in the three
theorems that restricts the application of this method to infinite-dimensional algebras. For
the same reason, it seems clear that the Adapted Ordering Method should be useful also for
generalized Lie algebras and superalgebras such as affine Kac–Moody algebras, nonlinear
W-algebras, superconformal W-algebras, loop Lie algebras, Borcherds algebras, F-Lie
algebras for F > 2 (F = 1 are Lie algebras and F = 2 are Lie superalgebras), etc.

One may wonder whether there are any prescriptions in order to construct the most suitable
orderings with the smallest kernels. The answer to this question is that there are no general
prescriptions or recipes as the orderings depend entirely on the given algebras. The way to
proceed is a matter of trial and error. That is, one constructs one total ordering, this can
always be done since a total ordering is simply a definition establishing which of any two
given terms is the bigger one, then one computes the kernel and decides whether this kernel
is small enough. In the case it is not, then one constructs a second ordering and repeats the
procedure until one finds a suitable ordering. It may also happen, for a given algebra, that
this procedure does not give any useful information because all the total orderings one can
construct are adapted only to the empty subset, in which case the ordering kernel is the whole
set of terms: CK

{li } = C{li }.
The Adapted Ordering Method has been applied so far to the N = 2 and Ramond

N = 1 superconformal algebras, allowing one to prove several conjectured results as well as
to obtain many new results, as we have reviewed. For example, this method allowed one to
discover subsingular vectors and two-dimensional spaces of singular vectors for the twisted
N = 2 and Ramond N = 1 algebras [4, 5]. (For the other three isomorphic N = 2 algebras
two-dimensional singular spaces had been discovered [14–16], as well as subsingular vectors
[11–14], before the Adapted Ordering Method was applied to them.) We are convinced
therefore that this method should be very helpful for the study of the representation theory of
many other algebras, in particular the N > 2 superconformal algebras, and some (at least) of
the generalized Lie algebras listed above.
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